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In  the first part of this work the stability of the erodible bed of a stream with a 
free surface is studied within the framework of classical hydraulics, in which the 
velocity variation with depth is reduced to a single mean velocity and the bed 
friction is related in a general way to the local depth and mean velocity. Only 
two-dimensional motions can be studied in this way. In  considering bed friction 
and a difference in phase between deposition and the mean velocity gradient 
along the channel, this work combines aspects of earlier studies of Exner and 
Kennedy. 

In  the absence of a phase difference between erosion and mean velocity, the 
analysis proceeds without linearization. When the development from an equili- 
brium flow down a uniform slope is considered, the bed waves formed under 
subcritical flows are found to move downstream, while those under super- 
critical flows upstream; in both regimes bed waves are damped. In  each case the 
side of a wave facing in the direction of motion is the steeper. 

When a phase shift is introduced as well, the analysis is carried forward only 
after linearization. The primary effect of bed slope and friction is a shift in the 
ranges of phase angle for which growth can take place and a corresponding 
alteration in the wavelengths for maximum growth. Friction also reduces bed- 
wave celerity. Consideration is given to the physical processes represented by 
the artifice of a phase difference between erosion and mean velocity gradient. 

The second section of this investigation concerns two-dimensional potential 
flow over a wavy stream bed. This problem is considered from a point of view 
different from that adopted previously by Kennedy; a modified criterion is 
proposed for the maximum Froude number at which bed waves will form. It is 
in better agreement with measured data. 

In  the third part of this paper, the potential analysis is extended to include 
a class of three-dimensional motions. The conditions are found for the formation 
of dunes (bed waves 180" out of phase with the surface waves above) and anti- 
dunes (the two in phase). The criterion separating dunes and antidunes for two 
dimensions is found to give a lower limit on the Froude number for antidunes 
of the more general three-dimensional class. In  the antidune regime the stream- 
wise perturbation to the velocity can change sign between surface and stream 
bed; the limit for this is determined. 

The erosion equation relating changes in bed level to local stream speed is 
generalized to include sediment convection in two dimensions. With this equa- 
tion, three distinct regimes of bed-wave motion are found: at low Froude 
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numbers, dunes moving downstream; at higher Froude numbers, antidunes 
moving upstream; and, finally, antidunes moving downstream. The criterion 
separating the last two r6gimes is just that mentioned above as the limit of 
flows whose velocity perturbation has the same sign from surface to stream bed. 
It is argued that this fundamental change in the flow marks also the end of the 
region of growth of small bed waves. It is found that three-dimensional dunes 
and upstream-moving antidunes can exist beyond the two-dimensional limit, 
but that the latter applies for all bed waves such that the ratio of stream depth to 
wavelength ( d / h )  is small. This explains why the modified criterion for two 
dimensions provides for small d l h  an envelope for data obtained from observa- 
tions of a wide variety of bed forms, but fails to do so for larger dlh. The celerity 
of bed waves beneath three-dimensional flows is discussed. It is suggested that 
a class of waves occurring in natural streams will move more slowly than would 
two-dimensional waves in similar conditions. 

The work concludes with a comparison of several methods of modelling 
erosive flows. 

1. Introduction 
Without resorting to empiricism, we cannot at present do more than predict 

the order of magnitude of the sediment moved downstream by a natural river 
or experimental channel. Even with the full use of correlations of data describing 
many streams, gross errors are often made in estimating the mean charge of 
sediment, undoubtedly as a result of the wide variations in the form of natural 
streams and in the material making up their beds (the two are of course related). 
The bed waves, sand bands, and meanders found in an erodible stream bed 
depend for their existence and motion along the channel on local changes in the 
velocity and depth and on corresponding adjustments in the load of sediment 
carried with the stream. Since adequate means have not been developed to 
predict even the mean sediment flux, we cannot hope for a quantitatively accu- 
rate description of phenomena dependent on small variations in sediment 
charge. What can be hoped for is an elucidation of the mechanical principles 
governing the interaction of a stream with its erodible boundaries, a qualitative 
description of the major features of bed waves, and a suggestion of the measure- 
ments which should be made and of the ways in which they may usefully be 
correlated. 

The mathematical analysis of the coupled waves on an erodible stream bed 
and in the water flowing above has followed two paths. In  the earliest studies, 
the fluid motion was described using one-dimensional hydraulics; more recently, 
potential motions have been studied. The two ways of modelling an erodible 
stream differ mainly in their descriptions of the motion of the water. In  all the 
work known to me, the erosive processes have been characterized by a relation- 
ship of the form 

relating the rate of deposit (a</at) to the velocity gradient (&/ax) and hence to 
the variation in the sediment-carrying ability of the flow In the potential model 

ayat  cc aupx 
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the velocity of interest is that a t  the stream bed. To account for a gradual adjust- 
ment of sediment load after a local change in the flow, the velocity gradient may 
be taken to  be that some distance upstream of the point at which the deposition 
is calculated. 

Although the hydraulic and potential models can be examined using very 
simple mathematical techniques, their properties have not been fully set forth 
in the literature. In the present work, the combined effects of friction and a 
difference in phase between deposition and velocity gradient will be considered 
using the hydraulic model, and three-dimensional potential flows will be ex- 
amined. The interaction between the stream and its bed will be described as 
in the past, although a generalization is necessary in dealing with three-dimen- 
sional motions of the fluid. It is to be expected that these models will have certain 
characteristics common to all erosive streams, but not that their detail will be 
duplicated in real streams. 

2. Two-dimensional waves : hydraulics 
The flows in natural streams are not two-dimensional, even setting aside the 

inevitable turbulent fluctuations. Nevertheless, for mathematical convenience, 
i t  has usually been assumed in the analysis of river flows that the velocity vector 
is confined to a plane or even, following classical hydraulics, that the motion is 
essentially unidirectional W l y ,  we shall make the same assumption, partly 
because of the intrinsic interest and tractability of the two-dimensional case, 
partly to establish standards of comparison for the three-dimensional motions 
to be examined later. 

In  the first part of this section ( $ 2 ( u ) )  we shall study perturbations to an 
equilibrium flow down a uniform slope, assuming the mean fluid motion to 
change so slowly (in time) that it can always be described with sufficient accuracy 
by steady-state momentum and continuity equations. The alteration of the 
effective fluid density by the transported material will also be neglected, and the 
charge of sediment wiIl be taken to be dependent solely on the IocaI mean stream 
velocity. Exner has studied the development of bed waves beneath a frictional 
flow (see Leliavsky 1959) under broadly similar restrictions. However, as 
Leliavsky reports it, Exner’s analysis is inconsistent in retaining the unsteady 
acceleration term of the momentum equation while rejecting from the con- 
tinuity equation the term representing depth variation in time. His analysis is 
thus made more difficult without consistently attaining a greater generality. 

In  tj 2 (b )  we shall generalize Exner’s model by relating the deposit of sediment 
to the velocity some distance upstream. In introducing a lag between velocity 
variations and the erosive processes we follow Kennedy (1963). 

(u) T h e  inJluence of bed slope and friction 
Since we shall assume for the time being that the erosion or deposition of bed 
material at any point is dependent on the local mean velocity, these results are 
applicable, if at all, to slowly changing flows in which the sediment load is 
always able to adopt the values appropriate to local conditions. On the positive 
side, the equations governing this restricted development are so simple that they 
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combine to form a unidirectional wave equation giving explicit results without 
linearization or restriction to sinusoidal perturbations. 

The equation relating changes in the bed level g(x,t) and variations in the 
charge of convected bed material is 

(1) aglat + aLpx = 0, 

where x is distance measured in the direction of the stream, t is time, and L is 
the effective volume flux of moving bed material per unit width of the channel. 
The word ‘effective ’ is introduced because voids are left in the sediment when it is 
deposited on the stream bed. 

If we assume that the charge of sediment is dependent on the local mean velo- 
city only, i.e. that L = L(u), we may write 

alJat + ?n aulax = 0 with m = dL/du, (2) 

where m, the slope of the sediment charge us. velocity curve, is a length charac- 
terizing the mobility of the bed material. We expect that m > 0 in all real situa- 
tions. 

The continuity and momentum equations to be associated with this erosion 
equation are 

and 

uh = q, 

U2 iz (ii it) h 
u - + g  -+- +p-=o,  

(3) 

(4) 

where > 0 is a non-dimensional friction coefficient, q is the volume flow rate 
per unit width of channel, and h is the water depth. On combination, equations 

u ag p u 3  
(3) and (4) give 

- au - - -~ 

ax h ( l - F 2 ) a x  g h z ( 1 - P ) ’  

with F 2  = u2/gh = u3/gq, F being the Froude number based on the local velocity 
and depth. 

We use equation ( 5 )  relating quasi-steady bed forms and velocity distributions 
t’o cast the erosion equation (2) into 

A motion consistent with the assumptions made above and of practical 
interest is the spontaneous development from an initially uniform flow down a 
uniform slope-the ‘normal’ flow on that slope, in the terminology of hydraulics. 
To investigate this situation we take 

6 = -  ccz + C’(X,  t ) ,  

where a > 0 is the initial uniform bed slope and 5’ is the developing perturbation 
of the bed. From equation (4) we find that the parameters of the basic flow are 

F: = u:/gho = ~ l lp ,  related by 

where Fo is the Froude number based on mean flow parameters. We have here 
identified p with the friction coefficient of the fundamental flow; this is equivalent 
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to assuming ,8 to be independent of the changes occurring in the perturbed 
flow. 

Using these relationships, we can write equation (5) as 

au _ -  (7 )  

The last term of this equation combines the contradictory influences of bed 
slope and friction. A question of particular interest is the position of the turning 
points of the velocity distribution relative to maxima of g', the perturbation to 
the bed shape. This relationship indicates immediately whether the crest will be 
eroded by a locally accelerating flow or augmented by a decelerating one (for 
m > 0).  The two cases to be considered are dealt with in table 1. In  both cases, 
erosion may be expected at the crests of bed waves, deposition in the troughs. 

Case At crest For ag'lax = 0 

F ,  F ,  < 1 F > F, aupx > o 
F , F ,  > 1 F < F, aupx < 0 

TABLE 1. Velocity gradients at crests of bed waves. 

We turn next to a rewritten form of the erosion equation (6), 

Dg'/Dt = ag'jat + c ac'jax = 8, ( 8 )  

giving the change of a perturbation travelling along the bed with celerity 

c = ?nu/h(l- F2).  (9) 

Note that c 0 ,  for F 5 1,  giving the downstream and upstream motions of bed 
waves traditionally (but not necessarily correctly) associated with subcritical 
and supercritical flows. The rate of change is 

This last result is consistent with the comments based on equation (7).  In  the 
absence of friction, we should have a neutrally stable propagating wave; the 
damping of the bed waves may be attributed to the combined action of friction 
and slope in displacing the turning points of the velocity distributions. 

Finally, we calculate 

e=m[2+I"z]>0 G?U h (1-F2)' 
forboth F z l .  

Examined with equation (7) in mind, this result suggests that in general the 
steeper faces of bed perturbations are those facing in the direction of motion. 
This prediction is in accord with observation; see for example the plates of 
Kennedy's (1963) paper. 
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( b )  T h e  inJluence of a phase difference between erosion and 
velocity gradient 

The results of the preceding investigation of the stability of a stream bed are 
negative, in the sense that perturbations are found to be damped in all realistic 
situations. Since bed waves do in fact appear spontaneously, some vital physical 
process must have been absent from the model used. To obtain a mathematical 
model in which growth is possible, we use the artifice introduced by Kennedy 
(1963) (and suggested earlier by Cartwright 1959)-an arbitrary phase difference 
between erosion and mean velocity. Consideration will be given later to the 
physical basis of such a phase difference. To introduce i t  without complicating 
the analysis beyond utility, we shall linearize the equations by retaining only the 
terms of the lowest orders in the perturbations to the mean velocity and depth. 

While the erosion equation (2) will be formally retained as the basis of the 
analysis, it  will henceforth represent a wide range of interactions between the 
stream and its bed material. In  essence, the assumption we shall make about the 
erosive processes is that the rate of deposit (a[/at)  is proportional to some 
physical quantity (perhaps the bed shear stress) whose magnitude is proportional 
to that of the velocity perturbation, but whose relative phase has not been 
specified. 

The linearized form of equation (7) is 

h auf ag' U f  

u0 ax ax UO 
(1-P;)A-  = -++3pF2 0 -  7 

where we have set u = uf0 + uf. Using the relationship F; = crib, we obtain 

mau'lax = c,(aC'/ax+ 3au'/u0), (10 )  

where co = muo/ho(l -Pi) (cf. equation (9)). 
With a spatial lag 6 between erosion and velocity, we have 

[aL/ax 1, = m[auf /ax -J%-~, 

linking the velocity to the variation in the load of convected bed material. The 
symbolism [ 1, means 'to be evaluated a t  x '. Equations ( 1 )  and (10) give 

[ag'lat], + co[acf/ax + 3 a ~ f / ~ , l , - ,  = o 
(cf. equation (8)). 

We consider sinusoidal perturbations, 

cf = Ueik(m+O and uf = buoeik(m-CO, 

where c = c,+ici is the complex bed-wave celerity; b is in general a complex 
quantity also, but u is a small real positive quantity. Substitution of these 
perturbations in equation (10 )  gives 

a/b = muo/co+ 3ia& 

c = co e--io( 1 + 3icrco/muo k)-1, 

and in equation (1 1 )  

when use is made of the relationship (12).  Here 0 = k8 is the angular phase lag. 
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For compactness we introduce 

f = ~ o x ~ / ~ u ~  k = 3a/h0( 1 - F i )  k ,  (14) 

a parameter expressing the importance of bed slope and friction. For negligible 
friction, f + 0; while f +- _+ co for situations in which slope and friction are of 
great importance. Also, f 2 0 for P 2 1. 

The expression (13) for the complex celerity may now be written as 

c = c e-ie /( 1 + i f )  = co( 1 +fz)-* e-t@'*) with q5 = tan-If. (15) 

Friction reduces the magnitude and alters the phase of the complex celerity. 
The condition for neutral stability is sin (8+ 4) = 0, and that for stationary (i.e. 
lion-translating) bed waves is cos (8 + q5) = 0. Figure 1 shows the dependence 
on f of the ranges of8  for various modes of bed-wave development. 

We seek now the conditions for the most rapid initial growth of perturbations, 
in the expectation that the corresponding waves are those which will in practice 
appear on the bed of a channel. Thus we anticipate that the physical processes 
giving rise to bed-wave growth are not associated with specific angular phase 
differences, but do perhaps give rise to a fixed spatial lag. This point will be taken 
up later. 

We have g' = aeik(.t-ct) = aekciteik(z--c,t)* 

Then A = aekc i t  is the amplitude of the simple travelling wave, and 

[dA/dt] ,  = a h i  

is the initial growth rate of the moving train of perturbations. Hence the con- 
dition for maximum initial growth is 

a[aA/at], /ak = a${a(kc)/ak} = 0. 

Using equations (14) and (15), we find it to be 

The latter limiting result is satisfied by 6 = 49.2", 196.2", and other values 
lying only a little above 8 = Nn, N = 2,3,  . . . . Only the second of these roots 
falls within the regions of positive growth shown in figure 1; it is the limiting 
value for both f + _+ a, Fo 3 1. 

For the limiting frictionless case (f --+ 0) the first two roots of equation (16) 
are 8 = 116.2" and 281.5"; their relevance to the growth of bed waves may be 
seen in figure 1. The intermediate conditions for maximum initial growth are 
shown there, too; each branch stays within a region of the graph associated with 
one mode of bed development. Thus we see that friction does not alter the kind 
of bed wave which grows most rapidly at a particular Froude number, although 
the wavelength for maximum growth is changed. The movement of bed waves is 
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predicted to be downstream for both the dunest of subcritical flow and the anti- 
dunest of the supercritical case. 

We have followed Kennedy in confining our attention to the first two possible 
maxima of the growth rate, one for subcritical, the other for supercritical flow. 
It is difficult to justify this restriction, especially when it is observed that the 
growth rate is higher at subsequent maxima. 

Comparing the importance of friction and phase shift in this analysis, we note 
that any lag between erosion and velocity gradient, no matter how small, com- 
pletely changes the character of the stability problem from one in which all bed 
waves are damped t o  one in which waves of certain lengths can grow. Further, 
the prediction of the direction of motion of antidunesis altered by the introduction 
of a lag. 

1 

2 

f 
1 

0 

-1 

f 
-2 

-3 

F\ $3- 1 

FIGURE 1. Dependence of mode of bed-wave development on friction parameter f t  

Froude number Fa, and phase angle 0. The full curves represent boundaries between 
regions of one mode of development. The dashed curves represent conditions of maximum 
initial growth rate and are both asymptotic to 0 = 196.2." 

Friction has no such drastic effect. On examining the form of the parameter f 
(equation (14)), noting that in practical cases a N O(lO-3) while kh, N O(l) ,  we 
conclude that only near the critical condition (F' = 1) canf take on any but very 
small values. Table 2 represents the values of the friction parameter for several 
of the flows examined by Simons, Richardson & Albertson (1961) which are 
nearly critical. The role of friction is greater in subcritical cases, particularly in 
Run 27. For that case, figure 1 suggests an alteration in the phase angle for 
maximum growth of A0 = 15". 

t It is difficult to give a comprehensive definition of these terms. Traditionally, the 
words 'dunes' and 'antidunes' have been used to distinguish between downstream- 
and upstream-moving bed waves. However, Kennedy found it expedient, in describing 
the results of his potential analysis, to define antidunes as bed waves in phase with the sur- 
face profile and, conversely, dunes as 180" out of phase with the surface. In a frictional 
flow there is no longer a rigid relationship between the phases of bed and surface and 
his clear-cut distinction is not possible. 



Waves on an erodible bed 121 

We now turn to the physical basis for the phase difference or spatial lag 
between velocity and erosion. Two interpretations will be examined: first, 
a phase difference between the velocity gradient along the channel (aujax of 
equation (2)) and the bed shear stress which has often been thought of as govern- 
ing the pick-up of material from the stream bed; secondly, a spatial lag between 
a local change in the flow and the adjustment of the sediment load to the modified 
conditions. The implications of the two proposals differ profoundly. The first 
mechanism would give a specific angular phase shift, independent of the wave- 
length of the disturbances on the stream bed. This phase difference depends on 

Run no. Fo f 
37 0.92 0.40 
30 0.84 0-18 
31 1.13 - 0.05 
39 1.12 - 0.05 

TABLE 2. Values off from data of Simons et al. (1961) 

the fluid motion; a good approximation could be found by considering a rigid 
wavy bed. The bed material is vital to the second mechanism. Its role is most 
easily visualized in terms of the phenomenon of saltation, in which a particle 
once dislodged from the stream bed leaps clear and is carried a discrete distance 
downstream before again touching the bed. This and more complex processes 
produce a spatial lag dependent on the bed material and the basic flow, but only 
weakly influenced by the spacing of the bed waves. Hence the wavelength (or 
wavelengths) appearing will be that (those) for which the fixed spatial lag 
corresponds to an angular phase difference favourable to rapid growth. Only 
if the mechanism is of this nature can any physical significance be ascribed 
to the conditions of maximum growth rate studied earlier (equation (16)). 

Let us next examine the implications of the hypothesis that the most rapid 
erosion will take place where bed shear is highest, concentrating first on sub- 
critical flows. The crudest concept of the generation of shear stress at  the stream 
bed would have the stress largest where an inviscid theory predicted the highest 
velocity, that is, at the crests of the bed waves for a subcritical hydraulic flow. 
If this were the case, a phase difference of 90" would pertain between shear stress 
and the velocity gradient au/ax. Benjamin (1959) has improved upon this 
picture by examining viscous shearing flows over wavy boundaries; since he 
considered a semi-infinite volume of fluid, his results are directly comparable 
only to the limiting subcritical case. For several flows a t  high Reynolds numbers 
he found the maximum shear stress to occur 30" and 60" upstream of the crests. 
These results suggest phase differences of 60" and 30" respectively. Referring 
to figure 1, we see that these values of 8 (i.e. 90", 60", and 30") lie in the range of 
damped waves for subcritical flow. Alt,ernatively, it  may be argued quite 
generally that large shear stresses will occur somewhere on the crests of bed 
waves in subcritical flows, so that these waves would inevitably be eroded away 
if the local shear stress were the vital factor in determining the rate of erosion. 
We conclude that the mechanism studied by Benjamin does not give rise to 
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phase shifts conducive to bed-wave development in subcritical flows, although 
it is doubtless relevant to the generation of surface waves by wind, the process 
in which he was directly interested. 

If we look at supercritical flows, we find a quite different situation, for the 
highest velocities (and presumably shear stresses) occur somewhere in the troughs 
of bed waves. Again a phase shift of 90" is appropriate in the simplest inviscid 
model. Under these circumstances, the mechanism under consideration could 
give rise to wave growth and, as can be seen from figure 1, the waves for Po > 1, 
8 2: 90" move upstream. Viewed in this way, the hydraulic model indicates the 
upstream-moving waves which have been observed under supercritical flows. 

Finally, we conclude that neither of the two mechanisms proposed to justify 
a phase shift or spatial lag can alone account for all the bed forms which occur 
in nature. 

3. Two-dimensional waves : potential flow 
Kennedy (1963) has made an exhaustive study of this problem, using a velocity 

potential to specify two-dimensional flow over long-crested bed waves. Un- 
fortunately, one fundamental result of his analysis is incorrect-the criterion 
giving the maximum Froude number for the formation of bed waves with a 
particular ratio of depth to wavelength. The re-examination necessary to revise 
this criterion will provide an introduction to the three-dimensional cases to be 
examined later. 

The reader should note that the notation used subsequently differs in a few 
respects from that used until now. The symbols P, co, and u are used slightly 
differently; the symbol /3 has an entirely new meaning; and the mean depth is 
identified by a new symbol, d. These changes are made either to maintain estab- 
lished conventions or to facilitate comparisons with the work of Kennedy. 

(a )  The motion of theJluid 

Kennedy's first step is a re-examination of the classical potential flow satisfying 
appropriate conditions at a free surface and a kinematic restriction at a sinu- 
soidally perturbed stream bed. He starts with a stationary wave pattern in 
water of uniform depth D and mean stream speed U ,  as shown in figure 2, 
noting that streamlines other than the surface (near y = 0 )  and level bottom 
(y = -D) can be chosen to represent various wavy stream beds. The streamline 
oscillating about d,, such that 0 < d, < D ,  corresponds generally to a perturbed 
supercritical flow beneath which antidunes (bed waves in phase with the surface 
disturbance) are established. A streamline near d,, such that 0 < D < d,, 
corresponds to a subcritical basic motion under which dunes (180" out of phase 
with the surface) occur on the bed. 

Kennedy points out that the class of motions considered must obey Airy's 

kU2/g = tanh (kD), condition 

relating the parameters of small free oscillations in water of constant depth 
(k = %/A is the wave-number). The wave-numbers consistent with this con- 
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dition lie in the range 0 < k < g / U 2 ,  and the corresponding wavelengths are such 
that 00 > h > 2nU2/g. 

Kennedy argues further that the minimum wavelength in the water sets a 
limit on the occurrence of bed waves. This criterion may be expressed as a maxi- 
mum Froude number a t  which bed waves are possible, as follows: 

r 

----/p----- 

FIGURE 2. Symbols in two-dimensional potential analysis. 

Three objections to this approach and its conclusion can be advanced. It 
seems unnecessary to tie the analysis of a wavy bed to that for a level one, or, 
looked a t  another way, it is not obvious that all forced motions of the liquid are 
contained in the class of free motions. We may argue too that very short bed 
waves do commonly form in rapid natural streams. Finally, as Kennedy points 
out himself, for high values of F and low values of kd the observations lie con- 
sistently beyond the limit given above. 

The velocity potential representing a steady sinusoidal perturbation on a 
uniform stream and satisfying the dynamic condition at  the free surface is 

q5 = Ux + UA[eku + {( 1 - a;)/( 1 + a;)} e-””] cos (kx ) ,  

with G; = kU2/g,  where A is a real constant. No restriction has been made on the 
nature of the bottom; it may be either level or wavy. We now take i t  to be the 
latter and t o  be given by 

y = -d+usin(kx). 

Then the ratio of surface and bed-wave amplitudes is 

R = [cosh (kd) - sinh (kd)/G;]-l. 

R > 0 for G; > tanh(kd), antidunes; R < 0 for G; < tanh(kd), dunes. No re- 
striction on Go is to be inferred from this approach (save that it be positive). 
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In  addition to the bed waves for Go < 1 admitted by Kennedy, which include 
both dunes and antidunes, and the singular case of free oscillations above a 
level bed, we have now admitted bed waves for which Go > 1, invariably anti- 
dunes. This added class consists of short bed waves producing little surface 
disturbance. (Note that R -+ 0 as k + co, h -+ 0, for any water depth d.) These 
short antidunes should not be confused with the dune ripples recorded by Simons 
et al. (1961) and by other observers. 

( b )  Criterion for formation of bed waves 

It may be argued that Kennedy’s condition FZ = l/kd prescribes with reasonable 
accuracy the range of observable bed m-aves. Having found it to be groundless, 
we are now faced with the task of establishing another criterion of nearly similar 
form to replace it. To do this, we study the motion of the bed waves themselves. 
This requires a consideration, in general terms a t  least, of the processes of erosion 
and deposition of the bed. The criterion derived is thus essentially different from 
Kennedy’s. His was obtained from a consideration of the dynamics of the fluid 
alone, and hence denied that certain flows were possible even over rigid sinu- 
soidally fluted plates. The condition replacing it is linked to the process of erosion 
and states only that certain lengths of bed waves will not appear spontaneously 
on erodible stream beds. Expressed in mathematical terms, this new condition 
is the limit of instability of the bed to erosive processes. We need not carry out 
the stability analysis explicitly here. Kennedy’s discussion of the ranges of 
stability can be used as the basis of this revision of his work. 

We may use the earlier steady-state analysis (that of 9 3 (a ) )  on the assumption 
that the bed waves move very slowly. Introducing into equation ( 2 )  the per- 

and the corresponding 

we obtain 

turbation < = aeiW-co0 

u‘ = - UAk[e-kd + {( 1 - a:)/( 1 + Gi)} e k d ]  eik(x-@), 

1 - Q$ tanh (Ed) 
G$ - tanh (kd) ’ 

- = -mk 
U 

a result given by Kennedy in another form. 
For the cases he considered, Go < 1, so that 

co/U < 0 for G$ > tanh(kd), antidunes; 

co/U > 0 for Gi < tanh(kd), dunes. 

If the restriction on Go is relaxed, a new limit is set for upstream propagation: 

G$ = coth(kd), 

or 

The significance of this criterion may be seen as follows. The ratio of velocity 
perturbations at the bed and a t  the surface is found to be 

u’( - d)/u’(O) = cosh ( k d )  - GE sinh ( kd ) .  



Waves on an erodible bed 125 

The perturbation changes sign between surface and bed when f2; > coth (kd). 
It is this fundamental change in the flow pattern which gives rise to another 
regime of downstream propagation of bed waves. We argue further that it marks 
also the end of the region of instability of bed waves of small amplitude. 

In  figure 3 the two criteria ( (17 )  and (19)) are plotted with experimental 
results taken from Kennedy’s paper. The region shown is that in which they 
differ significantly. 

1 I 1 1 I 

kd 
FIGURE 3. Comparison with measurement of criteria for the limit of growing bed waves. 
The point’s represent conditions under which bed waves have been seen to form naturally. 

Even shorter bed waves are consistent with the motion of the liquid. It is 
possible that the erosion gives rise to a further region of instability for much 
smaller wavelengths. On considering the data collected by Kennedy, one may 
then ask why so few observations do lie well beyond the limiting values proposed 
here and in Kennedy’s work. The answer is very likely that investigators were 
interested in dunes and banks rather than mere sand ripples, and therefore 
consistently failed to record the latter phenomena when they did occur. For 
example, in figure 8 of Simons et al. (1961) small ripples are visible on the surface 
of large banks. 

4. Three-dimensional waves 
The necessity of studying this more general class of motions becomes apparent 

on considering the bed forms occurring in nature and in experiments. The motion 
within a river meandering in an erodible flood plain is obviously three-dimen- 
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sional. But sharply curving channel banks are not necessary for complex bed 
configurations. For example, the photographs of Kennedy (1963) and of Simons 
et al. (1961) show three-dimensional bed waves in channels with rigid, non- 
erodible walls. Exner’s studies (reported by Leliavsky 1959) of the bottom of the 
River Mur reveal a succession of sand banks, lying alternately near the two sides 
of a slowly curving stream, their positions having no apparent relation to the 
basic curves. Similar observations are reported by Leopold & Wolman (1957) 
for the Valley and Brandywine Creeks in Pennsylvania. 

For three-dimensional motions, the classical techniques of hydraulics fail. 
Since only the approach through potential flow is available, friction cannot be 
taken into account. In  most respects the following analysis parallels that of 
5 3, the boundary conditions being again fully linearized. The erosive processes 
will be supposed to occur wholly on a nearly level stream bed; in effect, the stream 
will be retained between rigid vertical walls. While the widely meandering river 
is undoubtedly of ultimate interest in the study of streams with erodible beds, 
we can now model only flows in nearly straight channels. 

(a) The motion of the$uid 
We shall first examine a steady motion over a wavy stream bed, without reference 
to the much slower motion of the bed waves beneath. The basis of the study is 
the velocity potential. 

(30) 

where p = ( I c z + Z 2 ) *  and G2 = k2U2/g/3, satisfying the dynamic condition at the 
free surface. The relationship of this motion to actual flows will be discussed 
shortly. 

$J = Ux + UA[ebv + {( 1 - G2)/( 1 + G2)) e- lv]  cos (kx) cos (Zz), 

If the slightly wavy bottom is given by 

y = - d + a sin (kx) cos (Zz), 

the ratio of the surface-wave amplitude to bed-wave amplitude is 

R = [cosh (Pd) - sinh (Pd)/G2]-l .  

Then R > 0 for G2 > tanh(@), antidunes; 

R < 0 for G2 < tanh(/3d), dunes; 

or 

In  figure 4 the critical curves (R = 0) separating dunes and antidunes are 
shown for two cases, the two-dimensional (p = I c )  and a case in which three- 
dimensional waves occur (p = 2k).  We see that the former curve provides an 
inner limit for the formation of antidunes of any planform, although three- 
dimensional dunes can occur beyond this limit, as well as antidunes. Kennedy’s 
data (1963, figure 9; and figure 3 of this paper) are in general accord with this 
theoretical pattern: a few points representing antidunes fall a little below the 
curve R = 0 for p = k, while a larger number of points representing dunes lie 
above. 
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FIGURE 5. Contours of stream bed associated with three-dimensional flow. Dashed lines 
mark average depth d. Solid lines mark maximum and minimum depths. Dashed curves 
mark depth d + &a (deeps). Solid curves mark depth d - & (banks). 

The contours of the stream bed specified above (equation (20)) are sketched in 
figure 5. We now ask what kind of channel is modelled by this pattern. For the 
rigid vertical walls of experimental flumes, the condition w = a$/& = 0 must 
apparently be satisfied at the walls. Then for the simple pattern of sand banks 
alternating from side to side along the channel, the walls must lie at Zz = O",  
180". Some doubt is cast on the appropriateness of this choice for natural 
streams, if we compare the resulting pattern of bed waves with the observations 
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of Exner. Many of the sand banks he studied on the bottom of the Mur were not 
in contact with the river banks, but lay well out in the channel, as in the mathe- 
matical pattern obtained by choosing the lines 1.z = - go", 270" for the stream 
boundaries. This latter choice is open to the objection that w $. 0 on the sup- 
posed river banks. We conclude that neither choice describes Exner's observa- 
tions fully. However, the appropriate identification of channel width with wave- 
number must lie in the range b = rr/l to 2n/l. 

Flow over dunes 

I u'<O I U '>O I 

Flow over antidunes 
FIGURE 6. Transverse profiles of stream bed and surface. 

The variation of the streamwise velocity perturbation with depth can be 
studied as it was for two dimensions. We find the perturbation to be of constant 
sign from surface to bed only so long as G2 < coth (pd). This criterion is satisfied 
by all dunes (for which G2 < tanh (pd)), and by all upstream-moving antidunes, 
as has been shown for two-dimensional motions and will later be shown for 
three dimensions. 

The cross-stream profiles of bed and surface are sketched in figure 6 for the 
cases of dunes and antidunes. The corresponding velocity changes in the two 
halves of the channel are also indicated. Note too that 

AQ = aU(R+l/R-2)sin(Icx)cos(Z.z) 
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gives (to the first order) the change in the volume flux in the x-direction across 
a vertical line through the flow from surface to bed, while 

R+l/R-3=0 for RZO, 

so that the larger flow is in both cases through the half of the channel in which 
the velocities are lower. This fundamental fact about the lateral displacement 
of the perturbed stream may also be demonstrated from the variation of w 
along the centre-line of the stream (Zz = 90’) or by noting the direction of the 
streamline curvature and centripetal field required to balance the transverse 
slope of the surface. 

( b )  Generalized erosion equation 

We first cast the analysis of sediment convection of $ 3  (a) into a form more readily 
extended to convection in the two dimensions of the horizontal (x,z)-plane. 

L = nu, We can take 

with n the effective volume of suspended material per unit area through the 
flow from surface to bed. The quantity n may be thought of as roughly the thick- 
ness of the layer which would be deposited upon complete sedimentation. 

For n = n(u) only, we have 

aL/ax = (n +udn/du) au/ax = maulax, 

as given in equation (2). 
In  the case of present interest the sediment flux is a two-vector 

L = iLz + kL, (i, k being unit vectors) 

and will be assumed in the form 
L = n( V )  u, 

where u = iu + kw, and V 2  = u2 + v 2  + w2, with all the velocity components 
evaluated at the stream bed. This representation for the flux vector does not 
imply that v < u‘, w at the stream bed. The flux vector represents an integral over 
a cylindrical section passing vertically through the stream and hence is repre- 
sented correctly by a horizontal vector even in a three-dimensional flow. 

The sediment conservation equation (a generalization of equation (1)) is now 

aipt+v.L = 0, 

or a[/at+(dn/dV)(u.V)V+nV.u = 0. 

we have V 2  2: U2 + 2 Uu‘, so that 
For the case of small perturbations from the uniform flow, u = U, v = w = 0, 

(u. V) V 2: Vau’px. 

The erosion equation can then be written 

aLJat+mau’/ax+naw/az = 0 (cf. equation (2)), 

with m = d(nV)/d V N dL/d V .  These results are correct only to the first order in 
ull u. 

9 Fluid Mech. 22 
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( c )  The  celerity of bed waves 

We consider a slowly moving pattern given by 

y = - d + c  = -d+asink(x-ct)cos(Zz), 

and the associated velocity potential, simply that of equation (20) with x re- 
placed by x - ct, on the assumption that c < U .  Substituting this potential into 
the preceding equation, we find that 

c mk2 + n12 1 - G2 tanh (pa) 
U = -  /3 [ G 2 -  tanh ' 

- 

3.c 
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3' 1.5 
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Dunes and 

downstream-moving 
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FIGURE 7. Criteria separating different modes of bed development for two- 
dimensional waves (p = k )  and for a case of three-dimensional waves (/3 = 2 k ) .  

We expect that nh, n > 0 in all realistic situations. Then 

c / U  > 0 for G2 < tanh(pd), G2 > coth(pd), 

clU < 0 for coth (pd) > G2 > tanh (pa). 
The latter case consists solely of antidunes. In the former, the first of the ranges 
contains only dunes. It has been argued earlier that the second range is one of 
damping; if this is so, we may expect that no bed waves will form there spon- 
taneously. In  figure 7 the criterion 

G2 = coth (pd) or P2 = p2 coth (/3d)/k2pd 
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is plotted for two cases, the limiting one of /3 = k (equation (19)), and that for 
which /3 = 2k. Note that the limit found here becomes P -+ l/kd as kd -+ 0 
for all/3/k, so that the two-dimensional limit is nearly correct for three-dimensional 
waves when kd is small. However, for larger values of the depth to wavelength 
ratio, the criterion separating upstream and downstream-moving antidunes 
is displaced upwards to higher Froude numbers. We have proposed earlier that 
this criterion indicates the end of the range of bed-wave growth as well. This 

I I I I I 
0 0.5 1.0 1.5 2.0 kd 
FIGURE 8. Superposition of criteria of figures 4 and 7. 

interpretation is consistent with Kennedy’s data (1963, figure 9), which lie within 
the two-dimensional limit for small kd (see figure 3) but elsewhere stray well 
beyond. 

In figure 8 the two sets of criteria (from figures 4 and 7) are shown superposed. 
The regions contained within the corresponding pairs of limits are those in 
which upstream-travelling antidunes occur. The pairs of curves converge so 
rapidly as kd increases that, for all practical purposes, antidunes can exist only 
when kd < 2, in agreement with Kennedy’s data. 

The pattern of limits revealed by the potential analysis is much more com- 
plicated than that suggested by the hydraulic model studied first. The critical 
condition separating dunes and antidunes has been generalized in two respects, 
and a second criterion, without a physical basis in a one-dimensional hydraulic 
flow, has been discovered, with even more profound implications for bed-wave 

9-2 
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development. These criteria are especially valuable because they do not depend 
on the values assigned to parameters (such as n and m) necessary to describe 
the interaction fully. Nor do these criteria depend on the details of the stability 
analysis or on the nature of the erosive process, although the general nature of 
the stability considerations must be kept in mind in interpreting the limits in 
physical terms. 

It is of interest to  see what values the parameters introduced in this analysis 
adopt in actual rivers. The somewhat fragmentary data of Leopold & Wolman 
(1957) and of Exner suggest that the values 

kd = 0.05, F = 0.3, Ilk = 6 

are typical of streams in which banks alternate from side to side along straight 
reaches. We shall now attempt to  compare the celerity of the three-dimensional 
waves formed in these circumstances with that of two-dimensional waves of the 
same relative length. From equation (18) we have 

c , - p  m k l-G;tanh(kd) 
2 - r% [l+n(Z)z] [l-Gztanh(pd) 

The comparison can now be made without specific knowledge about the bed 
material, for this influences the ratio c/co only through 

n L/V -=- 
m dL/dV.  

A fair idea of the variation L( V )  can be obtained from measurements of mean 
sediment load. The important features are that L = 0 until a critical velocity is 
attained, and that thereafter the curve L( V )  is concave upwards. Then 

0 < n/m c 1 

quite generally. Taking n/m = +, we find c/co = 0.33 for the conditions given 
above. 

For these conditions, both the hydraulic and potential analyses suggest 
that bed waves should take the form of dunes moving downstream. This predic- 
tion is consistent with the observations of Exner. The alternating banks of the 
Mur were found to move downstream with a celerity a little above 200 m per 
year. Leliavsky (1 959) mentions other instances of downstream movement 
of large banks with celerities ranging from 20 to 700m per year. On the other 
hand, for the short train of bed waves in the Valley Creek studied by Leopold 
& Wolman, it seems probable that there is no translation along the channel, 
for the crest farthest upstream in the reach described is founded on an out- 
cropping of bed rock. 

5. Conclusion 
Although the preceding results are of some value in themselves, perhaps their 

greatest utility lies in their implications for further work. The hydraulic model is 
attractive in its simplicity, and has the advantages that friction can be intro- 
duced in a general way, and that rigorous linearization of the boundary con- 
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ditions is not necessary. However, the role of friction in bed-wave development 
was not found to be a vital one for the case considered in $2. Further, the com- 
plete neglect of the velocity variation with depth leads to a grossly oversimplified 
view of the stability of a stream under erosive attack. We must conclude that 
further analysis of bed waves based on one-dimensional hydraulics is unlikely 
to  be fruitful. 

The two-dimensional potential model provides a surprisingly accurate picture 
of bed-wave growth, as evidenced by figure 3 of this paper and figure 9 of Ken- 
nedy’s (1963). Some consideration of three-dimensional motions is necessary for 
a complete interpretation of the two-dimensional results, as has been shown in 
figures 4 and 7. Nevertheless, further study of two-dimensional motions will 
probably be valuable. A first step would be to replace the potential motion by a 
simple shearing flow-rotational, but still inviscid. This would probably give a 
better estimate of the limits separating the several r6gimes of the stability 
problem. But a real improvement in the stability analysis as a whole cannot be 
made unless the sediment/stream interaction is more realistically described as 
well. 

Three-dimensional investigations are bound up with the important question 
of sinuosity of rivers. But analytical success seems to dictate strict linearization 
while real rivers meander widely, and, when even slightly sinuous, exhibit 
great variations in depth along their courses. We still lack methods of studying 
these largest erosion waves which mould an entire stream channel. 

I should like to express my thanks to Mr S. W. Law, who pointed out to me 
an important error in the derivation of Q 4. 
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